Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits.
نویسندگان
چکیده
Retinal and choroidal vascular diseases, with their associated abnormalities in vascular permeability, account for the majority of patients with vision loss in industrialized nations. VEGF is upregulated in ischemic retinopathies such as diabetes and is known to dramatically alter vascular permeability in a number of nonocular tissues via Src kinase-regulated signaling pathways. VEGF antagonists are currently in clinical use for treating the new blood vessels and retinal edema associated with neovascular eye diseases, but such therapies require repeated intraocular injections. We have found that vascular leakage following intravitreal administration of VEGF in mice was abolished by systemic or topical delivery of what we believe is a novel VEGFR2/Src kinase inhibitor; this was confirmed in rabbits. The relevance of Src inhibition to VEGF-associated alterations in vascular permeability was further substantiated by genetic studies in which VEGF injection or laser-induced vascular permeability failed to augment retinal vascular permeability in Src-/- and Yes-/- mice (Src and Yes are ubiquitously expressed Src kinase family members; Src-/- and Yes-/- mice lacking expression of these kinases show no vascular leak in response to VEGF). These findings establish a role for Src kinase in VEGF-mediated retinal vascular permeability and establish a potentially safe and painless topically applied therapeutic option for treating vision loss due to neovascular-associated retinal edema.
منابع مشابه
VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increas...
متن کاملSrc tyrosine kinase regulates the stem cell factor–induced breakdown of the blood–retinal barrier
PURPOSE Stem cell factor (SCF) has been recently acknowledged as a novel endothelial permeability factor. However, the mechanisms by which SCF-induced activation of the SCF cognate receptor, cKit, enhances endothelial permeability have not been fully elucidated. This study aimed to investigate the role of Src in SCF-induced breakdown of the blood-retinal barrier (BRB). METHODS In vitro endoth...
متن کاملTopical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit.
PURPOSE To test the effect of pazopanib, a tyrosine kinase inhibitor that blocks VEGF and platelet-derived growth factor (PDGF) receptors and c-Kit, on vascular leakage and neovascularization (NV) in the retina. METHODS Pazopanib was tested to determine its effect on VEGF-induced vascular permeability via measurement of [(3)H]mannitol retina to lung (RLLR) and retina to renal leakage ratios (...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملBET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS
The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 118 6 شماره
صفحات -
تاریخ انتشار 2008